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Abstract

The fully developed mixed convection flow in a vertical circular duct is investigated analytically, under the assumption of laminar
parallel flow. A wall heat flux uniform in the axial direction and dependent on the angular coordinate is considered. As a consequence,
the fluid temperature is three dimensional, since it changes in the radial, axial and angular directions. An analytical method based on
Fourier series expansions of temperature and velocity fields is adopted to determine the velocity and the temperature distributions as
well as the friction factor and the average Nusselt number. The general solution, expressed in terms of Bessel functions, is applied to
study a case that has a special importance in technical applications: a duct whose wall is half subject to a uniform heat flux and half
adiabatic. The positive and negative threshold values of the ratio between the Grashof number Gr and the Reynolds number Re for
the onset of the flow reversal phenomenon are determined. A comparison between the average Nusselt number for the considered
non-axisymmetric case and that for the case of a duct subject to a uniform wall heat flux is performed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminar mixed convection in vertical or inclined circu-
lar ducts is a subject that has been extensively studied over
the last decades. For instance, the review papers [1,2], as
well as the references therein, show the most important
results achieved on this subject. In fact, most papers on this
topic refer to axisymmetric thermal boundary conditions.
For example, in [3] the Author discussed the fully devel-
oped mixed convection in a vertical tube in the case of lam-
inar flow with a uniform wall heat flux. However, there are
several technical cases such that the wall temperature and
the wall heat flux depend on the angular coordinate.
Non-axisymmetric thermal boundary conditions have been
studied, for instance, in [4] and, more recently, in [5]. In [6],
the Authors studied the case of a horizontal duct with half
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doi:10.1016/j.ijheatmasstransfer.2007.03.039

* Corresponding author.
E-mail address: antonio.barletta@mail.ing.unibo.it (A. Barletta).
cross-section subject to a uniform wall heat flux and the
other half adiabatic.

In the present paper, mixed convection flow in a vertical
circular duct is studied with reference to a wall heat flux
which is uniform along the axial direction and is an arbi-
trary function of the angular coordinate. Therefore, a net
fluid heating occurs in the flow direction. The fully devel-
oped region is studied and laminar parallel flow is consid-
ered. Moreover, the Boussinesq approximation is applied
by assuming the axially varying average temperature in a
duct section as the reference fluid temperature. As it has
been shown in [7], this assumption is the best choice to
ensure the validity of the Boussinesq approximation. The
momentum and energy balance equations are written in a
dimensionless form and are solved by employing an analyt-
ical method based on Fourier series expansions of both the
temperature field and the velocity field with respect to the
angular coordinate #. The velocity field, the temperature
field, the friction factor and the average Nusselt number
are evaluated. A special case is studied in detail: the case
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Nomenclature

A dimensionless parameter, defined by Eq. (24)
b0(r), an(r), bn(r) Fourier series coefficients, employed in

Eq. (20)
h0(r), cn(r), hn(r) Fourier series coefficients, employed in

Eq. (21)
f Fanning friction factor, defined by Eq. (54)
F(#) dimensionless arbitrary function of #, defined by

Eq. (19)
g gravitational acceleration vector
g magnitude of the gravitational acceleration
Gr Grashof number, defined in Eq. (6)
In, Jn Bessel functions of order n

k thermal conductivity of the fluid
m,n positive integers
Nu average Nusselt number, defined by Eq. (62)
Nusym average Nusselt number for uniform wall heat

flux
P difference between the pressure and the hydro-

static pressure
qw(#) local wall heat flux per unit area
qw average value of qw

r dimensionless radial coordinate, defined in Eq.
(6)

R radial coordinate
R0 radius of the duct
Re Reynolds number, defined in Eq. (6)
t dimensionless temperature, defined in Eq. (6)
tb dimensionless bulk temperature, defined by Eq.

(60)
tpeak peak value of the dimensionless temperature
tw dimensionless average wall temperature, defined

by Eq. (64)

T temperature
Tb bulk temperature of the fluid, defined by Eq.

(59)
T0 average fluid temperature in a duct section,

defined by Eq. (7)
T w average wall temperature
u dimensionless velocity, defined in Eq. (6)
U fluid velocity vector
U X-component of the fluid velocity
U0 average velocity in a duct section, defined by Eq.

(9)
Wn function of A, defined by Eq. (45)
X axial coordinate

Greek symbols

a thermal diffusivity
b volumetric coefficient of thermal expansion
cn Fourier series coefficients, employed in Eq. (19)
DT reference temperature difference
# angular coordinate
k dimensionless pressure drop, defined in Eq. (6)
K1 positive threshold value of Gr/Re

K2 negative threshold value of Gr/Re

l dynamic viscosity
m kinematic viscosity
q mass density
q0 mass density for T = T0

sw average wall shear stress, defined by Eq. (55)
xn Fourier series coefficients, employed in Eq. (19)
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of a vertical circular duct having a wall which is half subject
to a uniform heat flux and half adiabatic. The solution
shows that the velocity profile can be strongly influenced
by the buoyancy forces and may display flow reversal phe-
nomena. Plots of both the dimensionless temperature and
the dimensionless velocity as functions of the angular coor-
dinate # and of the dimensionless radial coordinate r are
presented for some values of the ratio between the Grashof
number Gr and the Reynolds number Re. Moreover, an
analysis of the conditions for the occurrence of the flow
reversal phenomenon is performed and the positive and
negative threshold values of Gr/Re are determined. Finally,
the average Nusselt number is compared with that of a
duct subject to a uniform axisymmetric wall heat flux.
Fig. 1. The vertical circular duct and the cylindrical coordinate system.
2. Mathematical model

Let us consider a vertical circular duct with radius R0

and a cylindrical coordinate system (X,R,#), as sketched
in Fig. 1. Let us suppose that a Newtonian fluid flows
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inside the duct in fully developed steady laminar regime.
The flow is assumed to be parallel, so that the velocity vec-
tor U has the only non-vanishing component U along the
X-axis. Moreover, the effect of viscous dissipation is con-
sidered as negligible.

The thermal boundary conditions considered are such
that the wall heat flux is both axially uniform and an arbi-
trary function of the angular coordinate #. Therefore, in
general, a net fluid heating occurs in the flow direction,
so that oT/oX 6¼ 0.

Let us invoke the Boussinesq approximation with a lin-
ear equation of state, namely

q ¼ q0½1� bðT � T 0Þ�; ð1Þ
where T0 is the average temperature on a duct cross-sec-
tion. As a consequence, U results in a solenoidal field
and, therefore,

oU=oX ¼ 0: ð2Þ
Let us consider the case of a duct subject to an incoming
wall heat flux that is an arbitrary function of #:

qwð#Þ ¼ k
oT
oR

����
R¼R0

¼ qwF ð#Þ; ð3Þ

where the average value qw on the circumference is given by

qw ¼
k

2p

Z 2p

0

d#
oT
oR

����
R¼R0

: ð4Þ

By means of Eqs. (3) and (4), one can conclude that the
average value of the arbitrary function F(#) on the circum-
ference must be equal to 1, i.e.

1

2p

Z 2p

0

d#F ð#Þ ¼ 1: ð5Þ

Let us define the dimensionless quantities

t ¼ T � T 0

DT
; u ¼ U

U 0

; r ¼ R
R0

; k ¼ � 4R2
0

lU 0

dP
dX

;

Re ¼ 2R0U 0

m
; Gr ¼ 8gbDTR3

0

m2
;

Gr
Re
¼ 4gbDTR2

0

mU 0

ð6Þ

and let us assume the following reference temperature T0,
reference temperature difference DT and reference velocity
U0,

T 0 ¼
1

pR2
0

Z 2p

0

d#

Z R0

0

dRRT ðX ;R; #Þ; ð7Þ

DT ¼ 2R0qw

k
; ð8Þ

U 0 ¼
1

pR2
0

Z 2p

0

d#

Z R0

0

dR RUðR; #Þ: ð9Þ

On account of Eqs. (6) and (8), positive values of Gr/Re

can be obtained for upward flow when the duct is heated
as well as for downward flow when the duct is cooled.
On the other hand, negative values of Gr/Re can be ob-
tained for upward flow when the duct is cooled as well as
for downward flow when the duct is heated.
In the fully developed regime, the quantity dP/dX is a
constant. Moreover,

oT
oX
¼ dT 0

dX
¼ dT w

dX
¼ 2aqw

kR0U 0

; ð10Þ

where

T wðX Þ ¼
1

2p

Z 2p

0

d#T ðX ;R0; #Þ ð11Þ

is the average wall temperature. Therefore, one has

t ¼ tðr; #Þ: ð12Þ
By means of Eqs. (6), (8) and (10), the momentum balance
equation in the X-direction and the energy balance equa-
tion can be written in the following dimensionless form,
respectively:

1

r
o

or
r
ou
or

� �
þ 1

r2

o2u

o#2
þ 1

4

Gr
Re

t þ k
4
¼ 0; ð13Þ

1

r
o

or
r
ot
or

� �
þ 1

r2

o2t

o#2
� u ¼ 0: ð14Þ

The no slip condition at the wall implies that

uð1; #Þ ¼ 0: ð15Þ

Eqs. (3), (6) and (8) yield

ot
or

����
r¼1

¼ 1

2
F ð#Þ: ð16Þ

Moreover, both the dimensionless velocity and the dimen-
sionless temperature on the duct axis must be finite.

Finally, since T0 and U0 are the average values of T and
U in a duct cross-section, the following constraints on the
functions t(r,#) and u(r,#) hold:Z 2p

0

d#

Z 1

0

dr rt ¼ 0; ð17Þ
Z 2p

0

d#

Z 1

0

dr ru ¼ p: ð18Þ
3. General solution of the balance equations

Under the assumption that the function F(#) that
appears in Eq. (5) is continuous for 0 6 # 6 2p, it can be
expressed as a Fourier series of sines and cosines, as
follows:

F ð#Þ ¼ 1þ
X1
n¼1

½cn sinðn#Þ þ xn cosðn#Þ�: ð19Þ

Similarly, since the functions t (r,#) and u (r,#) are contin-
uous for 0 6 r 6 1 and 0 6 # 6 2p, they can be expanded
as Fourier series in the variable #, as follows:
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tðr; #Þ ¼ b0ðrÞ
2
þ
X1
n¼1

anðrÞ sinðn#Þ þ bnðrÞ cosðn#Þ½ �; ð20Þ

uðr; #Þ ¼ h0ðrÞ
2
þ
X1
n¼1

cnðrÞ sinðn#Þ þ hnðrÞ cosðn#Þ½ �: ð21Þ

On account of Eqs. (20) and (21), the dimensionless
momentum balance equation (13) and the dimensionless
energy balance equation (14) can be written respectively as

1

2

1

r
d

dr
r

dh0

dr

� �
� A4b0

� �
þ k

4

þ
X1
n¼1

1

r
d

dr
r

dcn

dr

� �
� n2

r2
cn � A4an

� �
sin n#ð Þ

�

þ 1

r
d

dr
r

dhn

dr

� �
� n2

r2
hn � A4bn

� �
cosðn#Þ

�
¼ 0; ð22Þ

1

2

1

r
d

dr
r

db0

dr

� �
� h0

� �

þ
X1
n¼1

1

r
d

dr
r

dan

dr

� �
� n2

r2
an � cn

� �
sinðn#Þ

�

þ 1

r
d

dr
r

dbn

dr

� �
� n2

r2
bn � hn

� �
cosðn#Þ

�
¼ 0; ð23Þ

where

A4 ¼ � 1

4

Gr
Re
: ð24Þ

By means of Eqs. (19)–(21), the boundary conditions (15)
and (16) and the constraints (17) and (18) yield,
respectively,

h0ð1Þ
2
þ
X1
n¼1

½cnð1Þ sinðn#Þ þ hnð1Þ cosðn#Þ� ¼ 0; ð25Þ

1

2

db0

dr

����
r¼1

þ
X1
n¼1

dan

dr

����
r¼1

sinðn#Þ þ dbn

dr

����
r¼1

cosðn#Þ
� �

¼ 1

2
1þ

X1
n¼1

cn sinðn#Þ þ xn cosðn#Þ½ �
( )

; ð26Þ

Z 1

0

dr rb0 ¼ 0; ð27Þ
Z 1

0

dr rh0 ¼ 1: ð28Þ
3.1. Determination of b0(r), h0(r) and k

The functions b0(r), h0(r) and the parameter k can be
determined by solving the differential equations that can
be obtained from Eqs. (22)–(28).

In detail, by integrating Eqs. (22), (23), (25) and (26)
with respect to # in the range [0,2p], one obtains,
respectively,
1

r
d

dr
r

dh0

dr

� �
� A4b0 þ

k
2
¼ 0; ð29Þ

1

r
d

dr
r

db0

dr

� �
� h0 ¼ 0; ð30Þ

h0 1ð Þ ¼ 0; ð31Þ
db0

dr

����
r¼1

¼ 1: ð32Þ

On account of Eqs. (27)–(32), one has

h0ðrÞ ¼ A
J 0ðAÞI0ðArÞ � I0ðAÞJ 0ðArÞ
J 0ðAÞI1ðAÞ � I0ðAÞJ 1ðAÞ

; ð33Þ

b0ðrÞ ¼
J 0ðAÞ½AI0ðArÞ � 2I1ðAÞ� þ I0ðAÞ½AJ 0ðArÞ � 2J 1ðAÞ�

A2½J 0ðAÞI1ðAÞ � I0ðAÞJ 1ðAÞ�
;

ð34Þ

k ¼ 4A2 I1ðAÞJ 0ðAÞ þ I0ðAÞJ 1ðAÞ
I0ðAÞJ 1ðAÞ � J 0ðAÞI1ðAÞ

: ð35Þ

In the limit Gr/Re ? 0, i.e. when A ? 0, one obtains the
solution in the forced convection regime. In this limit,
Eqs. (33)–(35) yield

h0ðrÞ ¼ 4ð1� r2Þ; ð36Þ

b0ðrÞ ¼ �
5

12
þ r2 � r4

4
; ð37Þ

k ¼ 32: ð38Þ
3.2. Determination of an(r) and cn(r)

If one multiplies Eqs. (22), (23), (25) and (26) by
sin (m#), where m is an arbitrary positive integer, and then
integrates with respect to # in the range [0,2p], one obtains,
respectively,

1

r
d

dr
r

dcn

dr

� �
� n2

r2
cn � A4an ¼ 0; ð39Þ

1

r
d

dr
r

dan

dr

� �
� n2

r2
an � cn ¼ 0; ð40Þ

cnð1Þ ¼ 0; ð41Þ
dan

dr

����
r¼1

¼ cn

2
: ð42Þ

On account of Eqs. (39)–(42), one has

cnðrÞ ¼
Acn½J nðAÞInðArÞ � InðAÞJ nðArÞ�

W nðAÞ
; ð43Þ

anðrÞ ¼
cn½J nðAÞInðArÞ þ InðAÞJ nðArÞ�

AW nðAÞ
; ð44Þ

where Wn(A) is given by

W nðAÞ ¼ ½In�1ðAÞþ Inþ1ðAÞ�J nðAÞþ ½J n�1ðAÞ� J nþ1ðAÞ�InðAÞ:
ð45Þ

In the limit of forced convection (A ? 0), Eqs. (43) and
(44) yield
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cnðrÞ ¼ 0; ð46Þ

anðrÞ ¼
cnrn

2n
: ð47Þ
3.3. Determination of bn(r) and hn(r)

If one multiplies Eqs. (22), (23), (25) and (26) by
cos(m#), where m is an arbitrary positive integer, and then
integrates with respect to # in the range [0, 2p], one obtains,
respectively,

1

r
d

dr
r

dhn

dr

� �
� n2

r2
hn � A4bn ¼ 0; ð48Þ

1

r
d

dr
r

dbn

dr

� �
� n2

r2
bn � hn ¼ 0; ð49Þ

hnð1Þ ¼ 0; ð50Þ

dbn

dr

����
r¼1

¼ xn

2
: ð51Þ

By comparing Eqs. (48)–(51) with Eqs. (39)–(42), one
obtains

hnðrÞ ¼
xn

cn
cnðrÞ; ð52Þ

bnðrÞ ¼
xn

cn
anðrÞ: ð53Þ

For the particular case of a duct subject to a uniform
wall heat flux which does not depend on the angular coor-
dinate #, i.e. for F(#) = 1, the dimensionless temperature
field t(r,#) and the dimensionless velocity field u(r,#) coin-
cide with b0(r)/2 and h0(r)/2, respectively, and agree with
the expressions reported in [8]. Moreover, on account of
Eqs. (36), (46) and (52), in the limit of forced convection
(A ? 0), u (r,#) tends to the dimensionless Poiseuille veloc-
ity profile.
3.4. Comments on the general solution

An important feature of the general solution arises from
the denominators appearing in Eqs. (33)–(35), i.e.
J0(A)I1(A) � I0(A)J1(A), and in Eqs. (43) and (44), i.e.
Wn(A). When these denominators vanish, singularities of
the solution may arise. It is well known that, in the axisym-
metric wall heat flux case, when only the zero-order modes
in the Fourier series expansions are involved, the singular-
ity with the lowest absolute value of Gr/Re occurs for
Gr/Re = �1808.02 [8]. This value of Gr/Re corresponds
to a zero of J0(A)I1(A) � I0(A)J1(A). In Refs. [3,7], it is
pointed out that the physical significance of the first singu-
larity occurring for Gr/Re = �1808.02 is the occurrence of
unstable flow for Gr/Re 6 �1808.02. In fact, due to the sin-
gularity, in a neighborhood of Gr/Re = �1808.02, a small
perturbation of the boundary conditions (value of �qw)
results in an arbitrarily large modification of the velocity
and temperature profiles.
In the non-axisymmetric case, also the zeros of Wn(A)
for n P 1 must be considered. One observes that there is
a zero of W1(A) for Gr/Re = �271.849. On the other hand,
the quantities Wn(A) for n P 2 present zeros for values of
Gr/Re smaller than �1808.02. Therefore, by applying the
same reasoning introduced by Morton [3] in the axisym-
metric case, one can deduce that flow instabilities arise even
for Gr/Re 6 �271.849 when the mixed convection is non-
axisymmetric. More precisely, the occurrence of flow insta-
bilities for Gr/Re 6 �271.849 applies to non-axisymmetric
cases such that c1 6¼ 0 and x1 6¼ 0. Thermal boundary
conditions such that c1 = 0 = x1 lead to instabilities for
Gr/Re 6 �1808.02, i.e. in the same range defined for uni-
form wall heat flux. In the following, only flow regimes
with Gr/Re > �271.849 will be considered.
4. Fanning friction factor, bulk temperature and

Nusselt number

The Fanning friction factor f is defined as

f ¼ �sw

1
2
q0U 2

0

; ð54Þ

where �sw is the average wall shear stress given by

�sw ¼ �
l

2p

Z 2p

0

d#
oU
oR

����
R¼R0

: ð55Þ

By means of Eqs. (6) and (55), Eq. (54) yields

f ¼ � 2

p
1

Re

Z 2p

0

d#
ou
or

����
r¼1

: ð56Þ

By integrating Eq. (13) on the duct cross-section and by
employing Eq. (17) together with the Gauss–Green theo-
rem, one obtains

kpþ 4

Z 2p

0

d#
ou
or

����
r¼1

¼ 0: ð57Þ

As a consequence,

f Re ¼ k
2
: ð58Þ

Hence, from Eq. (38), in the limit of forced convection, one
obtains fRe = 16.

Since the bulk temperature Tb is defined as

T b ¼
1

pR2
0U 0

Z 2p

0

d#

Z R0

0

dR RUT ; ð59Þ

the dimensionless bulk temperature is given by

tb ¼
T b � T 0

DT
¼ 1

p

Z 2p

0

d#

Z 1

0

dr rut: ð60Þ

Eq. (60) shows that the dimensionless quantity tb is invari-
ant along the axial direction. By employing Eqs. (20), (21),
(33), (34), (43), (44), (52) and (53), one obtains
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tb ¼ �
ðA2 þ 4ÞJ 0ðAÞ2I1ðAÞ2 þ ðA2 � 4ÞI0ðAÞ2J 1ðAÞ2

4A2½J 0ðAÞI1ðAÞ � I0ðAÞJ 1ðAÞ�2

þ 1

2

X1
n¼1

c2
n þ x2

n

W nðAÞ2
½InðAÞ2J n�1ðAÞJ nþ1ðAÞ

� J nðAÞ2In�1ðAÞInþ1ðAÞ�: ð61Þ

With reference to an arbitrary cross-section of the duct, the
average Nusselt number is given by

Nu ¼ 2R0

k
�qw

T w � T b

: ð62Þ

On account of Eqs. (6), (8) and (60), one obtains

Nu ¼ 1
�tw � tb

; ð63Þ

where �tw is the dimensionless average wall temperature, de-
fined as

�tw ¼
T w � T 0

DT
¼ 1

2p

Z 2p

0

d# tð1; #Þ: ð64Þ

By means of Eqs. (20), (34), (44) and (53), one obtains

�tw ¼
1

A2
1þ AJ 0ðAÞI2ðAÞ

J 0ðAÞI1ðAÞ � I0ðAÞJ 1ðAÞ

� �
: ð65Þ

In the limit of forced convection (A ? 0), one obtains

�tw ¼
1

6
; tb ¼ �

1

16
; Nu ¼ 48

11
ð66Þ

for any possible assignment of F(#).

5. Technical application: duct with partially insulated wall

With reference to Fig. 2, let us consider a case of techni-
cal interest. In detail, let us assume that the duct is subject
to a uniform wall heat flux for 0 < # < p and is adiabatic
for p < # < 2p. On account of Eqs. (5) and (19), the func-
tion F(#) can be expressed as a Fourier series of sines only,
as follows:
Fig. 2. Duct with partially insulated wall.
F ð#Þ ¼ 1þ
X1
n¼1

cn sinðn#Þ; ð67Þ

where

cn ¼
4

pn
for n odd; cn ¼ 0 for n even: ð68Þ

Since the coefficients xn are zero, Eqs. (52) and (53) reveal
that, in this case,

hnðrÞ ¼ bnðrÞ ¼ 0: ð69Þ

By noticing that c1 6¼ 0, one can conclude that the range of
validity of the solution is Gr/Re > �271.849, as it can be in-
ferred from the discussion presented in Section 3.4.

On account of Eqs. (43), (44) and (68), one obtains

c2n�1ðrÞ ¼
4A½J 2n�1ðAÞI2n�1ðArÞ � I2n�1ðAÞJ 2n�1ðArÞ�

pð2n� 1ÞW 2n�1ðAÞ
; ð70Þ

a2n�1ðrÞ ¼
4½J 2n�1ðAÞI2n�1ðArÞ þ I2n�1ðAÞJ 2n�1ðArÞ�

pð2n� 1ÞAW 2n�1ðAÞ
; ð71Þ

c2nðrÞ ¼ a2nðrÞ ¼ 0: ð72Þ

Eqs. (61), (67) and (68) yield

tb ¼�
ðA2þ 4ÞJ 0ðAÞ2I1ðAÞ2þ ðA2� 4ÞI0ðAÞ2J 1ðAÞ2

4A2½J 0ðAÞI1ðAÞ � I0ðAÞJ 1ðAÞ�2

þ 8

p2

X1
n¼1

1

ð2n� 1Þ2W 2n�1ðAÞ2

� ½I2n�1ðAÞ2J 2ðn�1ÞðAÞJ 2nðAÞ � J 2n�1ðAÞ2I2ðn�1ÞðAÞI2nðAÞ�:
ð73Þ

It is easily shown that there exists a positive real number K1

such that flow reversal occurs for Gr/Re > K1 > 0. Indeed,
for Gr/Re = K1, the first derivative of u(r,#) with respect
to r evaluated for r = 1 and # = 3p/2 vanishes. On account
of Eqs. (21), (33) and (69)–(72), one obtains

K1 ¼ 359:503: ð74Þ

On the other hand, there exists a negative real number K2

such that flow reversal occurs for Gr/Re < K2 < 0. Indeed,
for Gr/Re = K2, the first derivative of u(r,#) with respect
to r evaluated for r = 1 and # = p/2 vanishes. On account
of Eqs. (21), (33) and (69)–(72), one obtains

K2 ¼ �69:0175: ð75Þ

One can observe that the loss of axial symmetry in the ther-
mal boundary conditions leads to a non-symmetric behav-
ior in the onset of the flow reversal phenomenon, i.e.
K1 6¼ �K2.

The analytical solution can be used to perform a
detailed study of the temperature and velocity distribution
in this technical case. To obtain results either in tabular or
graphical form, one must truncate the infinite Fourier ser-
ies to a finite number of terms sufficient to reach a pre-
scribed accuracy. In order to test the accuracy of the
truncated Fourier series, a comparison has been made with
a finite-element 2D solution of the governing equations



Table 1
Values of Nu and Nusym versus Gr/Re

Gr/Re Nu Nusym

Analytical Numerical Analytical Numerical Ref. [9]

�271.849 0 0.0000000 3.60686 3.60676 –
�250 0.0245445 0.0245449 3.67021 3.67021 –
�200 0.306888 0.306889 3.81361 3.81361 –
�150 0.965788 0.965790 3.95473 3.95473 –
�100 1.97169 1.97170 4.09348 4.09348 –
�50 3.16933 3.16934 4.22980 4.22980 –

0 48/11 4.36364 48/11 4.36364 –
100 6.27957 6.27957 4.62371 4.62371 –
200 7.48724 7.48724 4.87356 4.87356 –
300 8.23252 8.23251 5.11324 5.11323 –
400 8.73030 8.73029 5.34290 5.34289 5.03
500 9.09958 9.09957 5.56280 5.56280 5.34
600 9.40011 9.40010 5.77328 5.77328 5.61
700 9.66179 9.66178 5.97472 5.97471 5.85
800 9.89992 9.89990 6.16750 6.16750 6.06
900 10.1226 10.1226 6.35206 6.35205 6.26

1000 10.3342 10.3342 6.52880 6.52880 6.44

Table 2
Values of k and tpeak versus Gr/Re

Gr/Re k tpeak

Analytical Numerical Analytical Numerical

�271.849 12.7366 12.5601 – –
�250 14.4792 14.4793 5.87287 5.87269
�200 18.3237 18.3237 2.00374 2.00370
�150 21.9829 21.9829 1.30753 1.30752
�100 25.4728 25.4728 1.01487 1.01487
�50 28.8076 28.8076 0.852987 0.852989

0 32 32.0000 0.749788 0.749794
100 38.0012 38.0012 0.624917 0.624927
200 43.5532 43.5532 0.551337 0.551350
300 48.7183 48.7183 0.502294 0.502310
400 53.5474 53.5474 0.466940 0.466957
500 58.0829 58.0829 0.440032 0.440050
600 62.3600 62.3600 0.418723 0.418742
700 66.4083 66.4083 0.401329 0.401350
800 70.2529 70.2529 0.386789 0.386811
900 73.9154 73.9153 0.374401 0.374424

1000 77.4140 77.4140 0.363679 0.363702
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(13)–(18). The latter solution has been obtained by means
of software Comsol Multiphysics (� Comsol, Inc.). The
mesh adopted is unstructured and has 3048 elements. Table
1 reports values of Nu and Nusym. The quantity Nusym is the
average Nusselt number for a duct subject to an axisym-
metric uniform wall heat flux. Since, in the axisymmetric
case, one has cn = xn = 0, Nusym can be easily evaluated
from Eq. (63), with �tw given by Eq. (65) and tb expressed as

tb ¼ �
ðA2 þ 4ÞJ 0ðAÞ2I1ðAÞ2 þ ðA2 � 4ÞI0ðAÞ2J 1ðAÞ2

4A2½J 0ðAÞI1ðAÞ � I0ðAÞJ 1ðAÞ�2
: ð76Þ

Table 1 displays values obtained either by the analytical
Fourier series solution truncated to the first 50 terms or
by the numerical finite-element solution. Values of Gr/Re

not less than �271.849 are considered in Table 1, as well
as in Table 2, following the criterion specified in Subsection
3.4. The last column of Table 1 contains the values of Nusym

obtained by the correlation

Nusym ¼ 0:9973
Gr
Re

� �0:27

; 4� 102
6

Gr
Re
6 4� 104 ð77Þ

reported in Hallman [9]. Table 1 reveals an almost perfect
agreement within 6 digits accuracy between the average
Nusselt number evaluated analytically and numerically,
both in the non-axisymmetric case and in the axisymmetric
case. The comparison with the values of Nusym obtained
through Hallman’s correlation (77) yields a relative error
that decreases with Gr/Re from about 6% for Gr/
Re = 400 to about 1.5% for Gr/Re = 1000. In fact, as spec-
ified in Eq. (77), Hallman’s correlation is designed to fit the
data in a range of values of Gr/Re only marginally overlap-
ping with that considered in Table 1. In Table 2, values of k
and of the peak dimensionless temperature tpeak are re-
ported. The peak dimensionless temperature is the maxi-
mum value of the dimensionless temperature t in the
duct. Inspection of the thermal boundary conditions leads
one to conclude that the condition t = tpeak occurs in the
position r = 1 and # = p/2, i.e. in the central position of
the isoflux half boundary. Table 2 shows a comparison be-
tween the values of k and tpeak obtained analytically and
numerically. The values of tpeak obtained analytically re-
quire Fourier series truncated to the first 500 terms in order
to ensure six digits accuracy. Since, as specified in Subsec-
tion 3.4, the value Gr/Re = �271.849 corresponds to a sin-
gularity of the temperature field, the quantity tpeak becomes
infinite for this value of Gr/Re. The comparison between
values of k and tpeak obtained analytically and numerically
reveals a very good agreement. It must be pointed out that
the discrepancy between the data of k becomes slightly
higher only for Gr/Re = �271.849 due to the peculiarity
of this limiting case. Table 3 contains an illustration of
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Fig. 4. Dimensionless velocity distributions for r = 0.5.

Table 3
Series convergence check of the value of Nu for Gr/Re = 1000

No. of terms Nu

1 10.19291927
6 10.33420096

11 10.33422760
16 10.33422835
21 10.33422843
26 10.33422844
31 10.33422844
36 10.33422845
41 10.33422845
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the sensitivity of the analytically determined Nu to the
number of terms adopted in the truncated Fourier series.
Reference has been made to Gr/Re = 1000. Table 3 shows
that the evaluation of Nu requires only 16 terms to attain
eight digits accuracy. On the other hand, the convergence
of the series involved in the evaluation of other quantities,
as for instance the peak dimensionless temperature tpeak, is
much slower.

In Figs. 3 and 4, the dimensionless temperature distribu-
tion and the dimensionless velocity distribution are plotted
as functions of the angular coordinate #, for r = 0.5 and for
Gr/Re = �100, 0, 100, 1000. Fig. 3 shows that, both for
positive and for negative values of Gr/Re, the dimension-
less temperature t is always higher in the duct half where
non-vanishing wall heat flux is prescribed (0 6 # 6 p). This
result does not, in general, imply that the fluid is hotter in
the duct half 0 6 # 6 p. In fact, t has been obtained divid-
ing the temperature difference T � T0 by the constant DT

proportional to �qw (Eq. (8)). Then, if �qw > 0, the fluid is
heated and, in the duct half 0 6 # 6 p, the temperature is
higher than in the duct half p < # < 2p. On the other hand,
if �qw < 0, the fluid is cooled and, in the duct half 0 6 # 6 p,
the temperature is smaller than in the duct half p < # < 2p.
This feature is not affected by the direction of flow
(upward, U0 > 0, or downward, U0 < 0). In other words,
the behavior of the distribution of t is not affected by the
sign of Gr/Re, as it has been pointed out above. Fig. 4 dis-
plays the behavior of the dimensionless velocity distribu-
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Fig. 3. Dimensionless temperature distributions for r = 0.5.
tion. Unlike for the dimensionless temperature, the sign
of Gr/Re is important for the dimensionless velocity. Phys-
ically, the sign of Gr/Re determines whether buoyancy acts
on the fluid in the same direction or in the opposite direc-
tion of the average flow. More precisely, when Gr/Re > 0,
the fluid next to the isoflux half wall (0 6 # 6 p) is subject
to a buoyancy force directed as the average flow. The
reverse occurs when Gr/Re < 0. This behavior can be
recovered by inspecting the dimensionless velocity plots
in Fig. 4. The plot of u corresponding to Gr/Re = 1000
reveals that a region of reversed flow (u < 0) arises next
to the adiabatic wall.

In Figs. 5 and 6, the dimensionless temperature distribu-
tion and the dimensionless velocity distribution are plotted
as functions of the radial coordinate r on the vertical plane
defined by # = p/2 and # = 3p/2, for Gr/Re = �100, 0,
100, 1000. For the same physical reasoning stated while
commenting Fig. 3, the dimensionless temperature plots
reported in Fig. 5 show that the maximum value of dimen-
sionless temperature is obtained in correspondence of
the isoflux half wall (0 6 # 6 p). Fig. 6 shows that, for
Gr/Re = �100 and Gr/Re = 1000, flow reversal phenom-
ena arise, as expected from the threshold values of Gr/Re
given in Eqs. (74) and (75).
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In Figs. 7 and 8, the dimensionless temperature distribu-
tion t(r,#) and the dimensionless velocity distribution
u(r,#) are represented for Gr/Re = 1000. In particular,
Fig. 8 shows that, for this value of Gr/Re, strong deforma-
tions of the Poiseuille dimensionless velocity distribution
–1
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Fig. 7. Dimensionless temperature distribution for Gr/Re = 1000.

Fig. 8. Dimensionless velocity distribution for Gr/Re = 1000.
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Fig. 9. Plots of Nu and k versus Gr/Re for axisymmetric and non-
axisymmetric wall heat flux.
occur. Namely, values of u higher than 2 can take place
for 0 < # < p, while negative values of u are present in
the other half of the duct (flow reversal).

In Fig. 9, a comparison between the average Nusselt
number Nu and the average Nusselt number Nusym relative
to a duct subject to an axisymmetric uniform wall heat flux
is presented. One can observe that in the limiting case of
forced convection, i.e. for Gr/Re = 0, non-axisymmetric
and axisymmetric thermal boundary conditions yield the
same result, i.e. the well-known value 48/11. In Fig. 9,
the plot of k as a function of Gr/Re is also displayed. This
plot shows that k is an increasing function of Gr/Re. In
other words, for a fixed average velocity U0, buoyancy
yields an increase of jdP/dZj when Gr/Re > 0. The reverse
occurs for Gr/Re < 0.
6. Conclusions

The fully developed laminar mixed convection in a ver-
tical circular duct has been studied in the case of thermal
boundary conditions that are axially uniform and non-axi-
symmetric. An analytical solution of the dimensionless
momentum and energy balance equations has been deter-
mined. Expressions of the dimensionless temperature field,
of the dimensionless velocity field, of the dimensionless
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bulk temperature and of the average Nusselt number have
been provided.

A special case has been studied in detail: the case of a duct
with half wall subject to a uniform heat flux and the other
half adiabatic. The following results have been obtained.

� The buoyancy forces affect the dimensionless tempera-
ture field, the dimensionless velocity field, the dimen-
sionless pressure drop parameter, the Fanning friction
factor and the average Nusselt number.
� The positive and negative threshold values of Gr/Re for

the onset of flow reversal have been determined. A lack
of symmetry between the onset of flow reversal for
upward flow and downward flow is induced by the
non-axisymmetric thermal boundary conditions.
� The non-axisymmetric distribution of the wall heat flux

influences significantly the value of the circumferentially
averaged Nusselt number.
Appendix. How to obtain dimensional quantities

The results presented here have been determined in a
dimensionless form. However, in practice, prediction of
the values of dimensional quantities is the ultimate task.
Typically, one may want to know the value of a given
quantity, say the peak temperature, at a given axial station
where the average fluid temperature T0 has a known value.
In fact, T0(X) is easily obtained for prescribed �qw and U0 by
integrating Eq. (10).

Let us assume that the fluid is heated, i.e. �qw > 0, so that
the maximum temperature occurs, for a given X, at R = R0
and # = p/2. One evaluates Gr/Re on account of Eq. (6) by
substituting the values of the thermophysical properties at
temperature T = T0. Then, from Table 2, one reads the
value of tpeak. Finally, one evaluates the peak temperature
as T0 + tpeakDT. The evaluated ratio Gr/Re can be also
used, through Table 2, to determine k and then obtain
dP/dX as �klU 0=ð4R2

0Þ.
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